Content

- Monitoring techniques
 - Arc sensors
 - Optical sensors
 - Infrared sensors
 - Ultrasonic sensors
 - Digitalised visual testing
 - Macroscopic weld bead inspection
 - Others

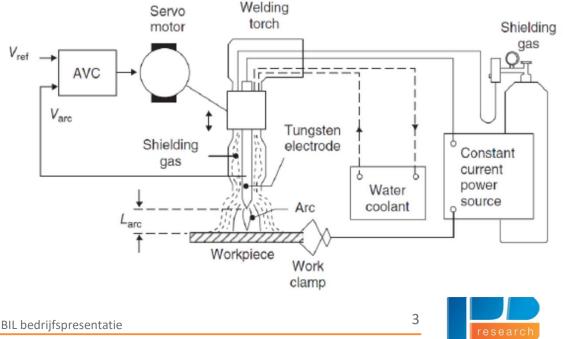
2

Monitoring techniques – Arc sensors

<u>Principle</u>

- Control the arc length using an automatic voltage/current control system
- Measurement of the position of the electrode compared to the workpiece.

<u>Advantages</u>


- No need for additional space
- Sensing accuracy not affected by wire bending, smoke, welding spatter, and arc heat
- Relatively low-cost and low maintenance costs

<u>Limitations</u>

 reliability depends on the groove geometry, welding position, arc sensor algorithm

Applications

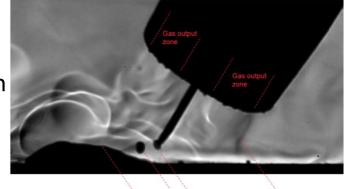
Automatic 3D seam tracking

Nov 2013

Monitoring techniques – Optical sensors

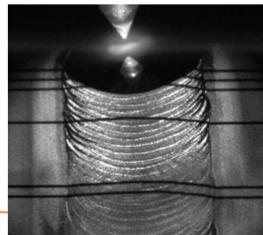
Principle

- Photosensors for arc length detection, weld pool oscillation analysis, and weld pool measurement.
- Light source sensed by the optical sensor can be used to estimate and measure the welding process variables and adjust the welding parameters inline
- Sensors : electro-optic, CCD, CMOS sensors, high speed camera


<u>Advantages</u>

- Contactless detection
- Rapid changes are detectable by the high speed camera
 <u>Limitations</u>
- Sensitive in a harsh environment (smoke, spatter)

Applications


- Monitoring of weld pool behaviour
- Measurement of plasma temperature
- Defect detection

Joining your future.

Melt pool fluctuation Droplet

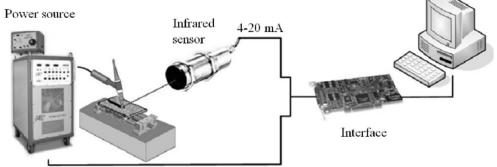
Monitoring techniques – Infrared sensors

Principle

- Measure the emission radiation from the surface of the weld
- Provide information about the temperature profile, cooling rate, seam tracking, bead width, and penetration depth

<u>Advantages</u>

- Small size and low cost
- Placed near the welding area


Limitations

 Interference with the arc radiation and emissions

Applications

- TIG welding
- Monitoring of weld process parameters, such as the weld penetration depth, seam tracking, cooling rate measurements, weld bead monitoring
 BIL bedrijfspresentatie

Analog and digital communication

5

Monitoring techniques – Ultrasonic sensors

<u>Principle</u>

- Measurement of acoustic waves of high frequency
- Piezo-electric transducer to convert ultrasonic vibrations into electric signals

<u>Advantages</u>

- Can be non-contact
- High resolution
- Access in tight spaces

Limitations

Complexity

Applications

Inline detection of weld defects

Monitoring techniques – Digitalised visual testing

<u>Principle</u>

- Measurement of the weld geometry
- Laser scanner

<u>Advantages</u>

- non-contact
- High resolution

Applications

MIG/MAG welding

Joining your future.

BIL bedrijfspresentatie

Nov 2013